skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kamoi, Ryo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 7, 2026
  2. Free, publicly-accessible full text available October 19, 2026
  3. Free, publicly-accessible full text available April 24, 2026
  4. Despite recent progress in abstractive summarization, models often generate summaries with factual errors. Numerous approaches to detect these errors have been proposed, the most popular of which are question answering (QA)-based factuality metrics. These have been shown to work well at predicting summary-level factuality and have potential to localize errors within summaries, but this latter capability has not been systematically evaluated in past research. In this paper, we conduct the first such analysis and find that, contrary to our expectations, QA-based frameworks fail to correctly identify error spans in generated summaries and are outperformed by trivial exact match baselines. Our analysis reveals a major reason for such poor localization: questions generated by the QG module often inherit errors from non-factual summaries which are then propagated further into downstream modules. Moreover, even human-in-the-loop question generation cannot easily offset these problems. Our experiments conclusively show that there exist fundamental issues with localization using the QA framework which cannot be fixed solely by stronger QA and QG models. 
    more » « less
  5. Textual entailment models are increasingly applied in settings like fact-checking, presupposition verification in question answering, or summary evaluation. However, these represent a significant domain shift from existing entailment datasets, and models underperform as a result. We propose WiCE, a new fine-grained textual entailment dataset built on natural claim and evidence pairs extracted from Wikipedia. In addition to standard claim-level entailment, WiCE provides entailment judgments over sub-sentence units of the claim, and a minimal subset of evidence sentences that support each subclaim. To support this, we propose an automatic claim decomposition strategy using GPT-3.5 which we show is also effective at improving entailment models’ performance on multiple datasets at test time. Finally, we show that real claims in our dataset involve challenging verification and retrieval problems that existing models fail to address. 
    more » « less